Arbeitspapier

High dimensional semiparametric moment restriction models

We consider nonlinear moment restriction semiparametric models where both the dimension of the parameter vector and the number of restrictions are divergent with sample size and an unknown smooth function is involved. We propose an estimation method based on the sieve generalized method of moments (sieve GMM). We establish consistency and asymptotic normality for the estimated quantities when the number of parameters increases modestly with sample size. We also consider the case where the number of potential parameters/covariates is very large, i.e., increases rapidly with sample size, but the true model exhibits sparsity. We use a penalized sieve GMM approach to select the relevant variables, and establish the oracle property of our method in this case. We also provide new results for inference. We propose several new test statistics for the over-identi fication and establish their large sample properties. We provide a simulation study that shows the performance of our methodology. We also provide an application to modelling the effect of schooling on wages using data from the NLSY79 used by Carneiro et al.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP69/18

Klassifikation
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models; Multiple Variables: General
Thema
Generalized method of moments
high dimensional models
moment restriction
over-identification
penalization
sieve method
sparsity

Ereignis
Geistige Schöpfung
(wer)
Dong, Chaohua
Gao, Jiti
Linton, Oliver Bruce
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2018

DOI
doi:10.1920/wp.cem.2018.6918
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Dong, Chaohua
  • Gao, Jiti
  • Linton, Oliver Bruce
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2018

Ähnliche Objekte (12)