Arbeitspapier

Consistency and asymptotic normality of the maximum likelihood estimator in a zero-inflated generalized Poisson regression

Poisson regression models for count variables have been utilized in many applications. However, in many problems overdispersion and zeroinflation occur. We study in this paper regression models based on the generalized Poisson distribution (Consul (1989)). These regression models which have been used for about 15 years do not belong to the class of generalized linear models considered by McCullagh and Nelder (1989) for which an established asymptotic theory is available. Therefore we prove consistency and asymptotic normality of a solution to the maximum likelihood equations for zero-inflated generalized Poisson regression models. Further the accuracy of the asymptotic normality approximation is investigated through a simulation study. This allows to construct asymptotic confidence intervals and likelihood ratio tests.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 423

Subject
central limit theorem
likelihood
maximum likelihood estimator
overdispersion
zero-inflated generalized Poisson regression

Event
Geistige Schöpfung
(who)
Czado, Claudia
Min, Aleksey
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2005

DOI
doi:10.5282/ubm/epub.1792
Handle
URN
urn:nbn:de:bvb:19-epub-1792-8
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Czado, Claudia
  • Min, Aleksey
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2005

Other Objects (12)