Finite‐strain poro‐visco‐elasticity with degenerate mobility

Abstract: A quasistatic nonlinear model for poro‐visco‐elastic solids at finite strains is considered in the Lagrangian frame using the concept of second‐order nonsimple materials and Kelvin–Voigt‐type viscosity. The elastic stresses satisfy static frame‐indifference, while the viscous stresses satisfy dynamic frame‐indifference. The mechanical equation is coupled to a diffusion equation for a solvent or fluid content. The latter is pulled‐back to the reference configuration. To treat the nonlinear dependence of the mobility tensor on the deformation gradient, the result by Healey and Krömer is used to show that the determinant of the deformation gradient is bounded away from zero. Moreover, the focus is on the physically relevant case of degenerate mobilities. The existence of weak solutions is shown using a staggered time‐incremental scheme and suitable energy‐dissipation inequalities.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Finite‐strain poro‐visco‐elasticity with degenerate mobility ; day:25 ; month:03 ; year:2024 ; extent:22
ZAMM ; (25.03.2024) (gesamt 22)

Creator
van Oosterhout, Willem J. M.
Liero, Matthias

DOI
10.1002/zamm.202300486
URN
urn:nbn:de:101:1-2024032613071264281143
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:55 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)