Low rank surrogates for fuzzy‐stochastic partial differential equations

Abstract: We consider a particular fuzzy‐stochastic PDE depending on the interaction of probabilistic and non‐probabilistic (via fuzzy arithmetic in terms of possibility theory) influences. Such a combination is beneficial in an engineering context, where aleatoric and epistemic uncertainties appear simultaneously. The fuzzy‐stochastic dependence is described in a high‐dimensional parameter space, thus easily leading to an exponential complexity in practical computations. To alleviate this severe obstacle, a compressed low‐rank approximation in form of Hierarchical Tucker representation of the desired parametric quantity of interest is derived. The performance of the proposed model order reduction approach is demonstrated.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Low rank surrogates for fuzzy‐stochastic partial differential equations ; volume:19 ; number:1 ; year:2019 ; extent:2
Proceedings in applied mathematics and mechanics ; 19, Heft 1 (2019) (gesamt 2)

Urheber
Gruhlke, Robert
Eigel, Martin
Moser, Dieter
Grasedyck, Lars

DOI
10.1002/pamm.201900376
URN
urn:nbn:de:101:1-2022072208181994566326
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)