Artikel

Removing specification errors from the usual formulation of binary choice models

We develop a procedure for removing four major specification errors from the usual formulation of binary choice models. The model that results from this procedure is different from the conventional probit and logit models. This difference arises as a direct consequence of our relaxation of the usual assumption that omitted regressors constituting the error term of a latent linear regression model do not introduce omitted regressor biases into the coefficients of the included regressors.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 2 ; Pages: 1-21 ; Basel: MDPI

Classification
Wirtschaft
Estimation: General
Model Construction and Estimation
Subject
binary choice models
specification errors
stochastic coefficients

Event
Geistige Schöpfung
(who)
Swamy, Paravastu A. V. B.
Chang, I-Lok
Mehta, Jatinder S.
Greene, William H.
Hall, Stephen G.
Tavlas, George S.
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2016

DOI
doi:10.3390/econometrics4020026
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Swamy, Paravastu A. V. B.
  • Chang, I-Lok
  • Mehta, Jatinder S.
  • Greene, William H.
  • Hall, Stephen G.
  • Tavlas, George S.
  • MDPI

Time of origin

  • 2016

Other Objects (12)