Mixing operators on spaces with weak topology
Abstract: We prove that a continuous linear operator T on a topological vector space X with weak topology is mixing if and only if the dual operator T′ has no finite dimensional invariant subspaces. This result implies the characterization of hypercyclic operators on the space ω due to Herzog and Lemmert and implies the result of Bayart and Matheron, who proved that for any hypercyclic operator T on ω, T⊕T is also hypercyclic.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Mixing operators on spaces with weak topology ; volume:44 ; number:1 ; year:2011 ; pages:143-150 ; extent:8
Demonstratio mathematica ; 44, Heft 1 (2011), 143-150 (gesamt 8)
- Creator
-
Shkarin, Stanislav
- DOI
-
10.1515/dema-2013-0288
- URN
-
urn:nbn:de:101:1-2411171636374.851230853264
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
20.05.0009, 12:00 AM CET
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Shkarin, Stanislav