Mixing operators on spaces with weak topology

Abstract: We prove that a continuous linear operator T on a topological vector space X with weak topology is mixing if and only if the dual operator T′ has no finite dimensional invariant subspaces. This result implies the characterization of hypercyclic operators on the space ω due to Herzog and Lemmert and implies the result of Bayart and Matheron, who proved that for any hypercyclic operator T on ω, T⊕T is also hypercyclic.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Mixing operators on spaces with weak topology ; volume:44 ; number:1 ; year:2011 ; pages:143-150 ; extent:8
Demonstratio mathematica ; 44, Heft 1 (2011), 143-150 (gesamt 8)

Creator
Shkarin, Stanislav

DOI
10.1515/dema-2013-0288
URN
urn:nbn:de:101:1-2411171636374.851230853264
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
20.05.0009, 12:00 AM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Shkarin, Stanislav

Other Objects (12)