Fast Response, High‐Power Tunable Ultrathin Soft Actuator by Functional Piezoelectric Material Composite for Haptic Device Application
Abstract: Recently, self‐driven soft robotics based on biomimetics, capable of mimicking biological motion, has attracted attention. Soft actuators using intrinsically soft organic materials are expected to be applied to haptic devices, artificial muscles, and micropumps. Ferroelectric polymers can aid in the realization of such soft actuators. However, actuators using such materials encounter problems in terms of the response frequency to an applied voltage. In this study, a soft actuator is fabricated by a printing process using a unique composite material comprising P (VDF‐TrFE), nano‐carbon material (single‐walled carbon nanotubes (SWCNT) and graphene oxide (GO)), and conductive polymer. To characterize the actuator using a minimum substrate thickness of 25 µm, hysteresis curves in the ferroelectric properties and driving characteristics according to the applied frequency are clarified. In addition, the mechanical life of the actuator under continuous voltage sweep has been clarified considering it as a mechanical property. Subsequently, a simple haptics system has been constructed using the fabricated actuators, and a human‐sensitive actuator demonstration system has been constructed wherein the phase of the sweep frequency is variable.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Fast Response, High‐Power Tunable Ultrathin Soft Actuator by Functional Piezoelectric Material Composite for Haptic Device Application ; day:29 ; month:01 ; year:2023 ; extent:7
Advanced electronic materials ; (29.01.2023) (gesamt 7)
- Creator
-
Shouji, Yoshinori
Sekine, Tomohito
Ito, Keita
Ito, Naoya
Yasuda, Tatsuya
Wang, Yi‐Fei
Takeda, Yasunori
Kumaki, Daisuke
Santos, Fabrice Domingues Dos
Miyabo, Atsushi
Tokito, Shizuo
- DOI
-
10.1002/aelm.202201040
- URN
-
urn:nbn:de:101:1-2023012914024566889794
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:27 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Shouji, Yoshinori
- Sekine, Tomohito
- Ito, Keita
- Ito, Naoya
- Yasuda, Tatsuya
- Wang, Yi‐Fei
- Takeda, Yasunori
- Kumaki, Daisuke
- Santos, Fabrice Domingues Dos
- Miyabo, Atsushi
- Tokito, Shizuo