Preprint

Clustering Macroeconomic Time Series

There is growing literature in macroeconomics, especially on business cycle synchronization, employing different methods of time series clustering. However, even as an unsupervised learning method, this technique requires making choices that are nontrivially influenced by the nature of the data involved. By extensively testing various possibilities, we arrive at a choice of a dissimilarity measure (compression-based dissimilarity measure, or CDM) which is particularly suitable for clustering macroeconomic variables. We check that the results are stable in time and consistent with the literature on core-periphery pattern of European business cycles. We also successfully apply our findings to the analysis of national economies, specifically to identifying their structural relations. To our knowledge, it is the first comprehensive analysis of the usefulness of the different dissimilarity measures for the macroeconomic research.

Language
Englisch

Bibliographic citation

Classification
Wirtschaft
Macroeconomics and Monetary Economics: General
Methodological Issues: General
Computational Techniques; Simulation Modeling
Subject
time series clustering
similarity
cluster analysis
GDP

Event
Geistige Schöpfung
(who)
Augustyński, Iwo
Laskoś-Grabowski, Paweł
Event
Veröffentlichung
(who)
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft
(where)
Kiel und Hamburg
(when)
2017

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Preprint

Associated

  • Augustyński, Iwo
  • Laskoś-Grabowski, Paweł
  • ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft

Time of origin

  • 2017

Other Objects (12)