Arbeitspapier

Moment Approximation for Least Squares Estimators in Dynamic Regression Models with a Unit Root

Asymptotic expansions are employed in a dynamic regression model with a unit root inorder to find approximations for the bias, the variance and for the mean squared error of theleast-squares estimator of all coefficients. It is found that in this particular context suchexpansions exist only when the autoregressive model contains at least one non-redundant exogenousexplanatory variable and that local to zero asymptotic approaches are here without avail.Surprisingly the large sample and small disturbance asymptotic techniques give closely relatedresults, which is not the case in stable dynamic regression models. The expressions for momentapproximations are specialized to the random walk with (trend in) drift model and their accuracyis examined in Monte Carlo experiments.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 01-118/4

Classification
Wirtschaft
Subject
Regression
Schätztheorie
Unit Root Test
Monte-Carlo-Methode
Theorie

Event
Geistige Schöpfung
(who)
Kiviet, Jan F.
Phillips, Garry D.A.
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2001

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kiviet, Jan F.
  • Phillips, Garry D.A.
  • Tinbergen Institute

Time of origin

  • 2001

Other Objects (12)