Channel Attention Module for Segmentation of 3D Hyperspectral Point Clouds in Geological Applications

Abstract. We develop a Transformer-based model enhanced with a Channel Attention Module (CAM) to capture the inter-channel dependencies in 3D hyperspectral point cloud data for geological applications. We hypothesize that specific channels of hyperspectral data correspond to distinct mineral types, and therefore, exploiting the relationships among these channels is beneficial for our analysis. We evaluate our method using the newly released Tinto dataset, which consists of 3D hyperspectral point clouds featuring three different spectral ranges: LongWave Infrared (LWIR), ShortWave Infrared (SWIR), and Visible-Near Infrared (VNIR).We explore four different CAMs from various networks—SENet, ECANet, CBAM, and DANet—and successfully integrate them into a CNN-based model to enhance feature representation. We specifically tailor the channel attention to our use of 3D hyperspectral point cloud data. Our experiments demonstrate significant improvements in performance after incorporating the CAM into our backbone model, which draws inspiration from the Point Cloud Transformer architecture and Vector Self-Attention mechanism. These results highlight the potential for further research into enhancing classification accuracy using hyperspectral data in geological applications. The code will be released on https://github.com/aldinorizaldy/CAM-Transformer.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Channel Attention Module for Segmentation of 3D Hyperspectral Point Clouds in Geological Applications ; volume:XLVIII-4/W11-2024 ; year:2024 ; pages:103-109 ; extent:7
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-4/W11-2024 (2024), 103-109 (gesamt 7)

Klassifikation
Elektrotechnik, Elektronik

Urheber
Rizaldy, Aldino
Ghamisi, Pedram
Gloaguen, Richard

DOI
10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024
URN
urn:nbn:de:101:1-2408061104399.851978949341
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 08:48 UTC

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)