Convergence theorems for monotone vector field inclusions and minimization problems in Hadamard spaces

Abstract: This article analyses two schemes: Mann-type and viscosity-type proximal point algorithms. Using these schemes, we establish Δ-convergence and strong convergence theorems for finding a common solution of monotone vector field inclusion problems, a minimization problem, and a common fixed point of multivalued demicontractive mappings in Hadamard spaces. We apply our results to find mean and median values of probabilities, minimize energy of measurable mappings, and solve a kinematic problem in robotic motion control. We also include a numerical example to show the applicability of the schemes. Our findings corroborate some recent findings.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Convergence theorems for monotone vector field inclusions and minimization problems in Hadamard spaces ; volume:11 ; number:1 ; year:2023 ; extent:25
Analysis and geometry in metric spaces ; 11, Heft 1 (2023) (gesamt 25)

Creator
Salisu, Sani
Kumam, Poom
Sriwongsa, Songpon

DOI
10.1515/agms-2022-0150
URN
urn:nbn:de:101:1-2023042914190359271793
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:46 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)