Arbeitspapier

Pricing Double Barrier Options: An Analytical Approach

Double barrier options have become popular instruments in derivative markets. Several papers_new have already analyseddouble knock-out call and put options using different methods. In a recent paper, Geman and Yor (1996) deriveexpressions for the Laplace transform of the double barrrier option price. However, they have to resort to numericalinversion of the Laplace transform to obtain option prices. In this paper, we are able to solve, using contour integration,the inverse of the Laplace transforms analytically thereby eliminating the need for numerical inversion routines. To ourknowledge, this is one of the first applications of contour integration to option pricing problems. To illustrate the power ofthis method, we derive analytical valuation formulas for a much wider variety of double barrier options than has beentreated in the literature so far. Many of these variants are nowadays being traded in the markets. Especially, options whichpay a fixed amount of money (a rebate) as soon as one of the barriers is hit and double barrier knock-in options.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 97-015/2

Klassifikation
Wirtschaft
Thema
double barrier options
option pricing
partial differential equations
Laplace transform
Cauchy's Residue Theorem
Optionsgeschäft
Theorie

Ereignis
Geistige Schöpfung
(wer)
Pelsser, Antoon
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
1997

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Pelsser, Antoon
  • Tinbergen Institute

Entstanden

  • 1997

Ähnliche Objekte (12)