Artikel

Forecasting natural gas consumption in China by Bayesian Model Averaging

With rapid growth of natural gas consumption in China, it is in urgent need of more accurate and reliable models to make a reasonable forecast. Considering the limitations of the single model and the model uncertainty, this paper presents a combinative method to forecast natural gas consumption by Bayesian Model Averaging (BMA). It can effectively handle the uncertainty associated with model structure and parameters, and thus improves the forecasting accuracy. This paper chooses six variables for forecasting the natural gas consumption, including GDP, urban population, energy consumption structure, industrial structure, energy efficiency and exports of goods and services. The results show that comparing to Gray prediction model, Linear regression model and Artificial neural networks, the BMA method provides a flexible tool to forecast natural gas consumption that will have a rapid growth in the future. This study can provide insightful information on natural gas consumption in the future.

Sprache
Englisch

Erschienen in
Journal: Energy Reports ; ISSN: 2352-4847 ; Volume: 1 ; Year: 2015 ; Pages: 216-220 ; Amsterdam: Elsevier

Klassifikation
Wirtschaft
Thema
Bayesian Model Averaging
Forecasting
Natural gas consumption

Ereignis
Geistige Schöpfung
(wer)
Zhang, Wei
Yang, Jun
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2015

DOI
doi:10.1016/j.egyr.2015.11.001
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Zhang, Wei
  • Yang, Jun
  • Elsevier

Entstanden

  • 2015

Ähnliche Objekte (12)