Arbeitspapier

Modeling migraine severity with autoregressive ordered probit models

This paper considers the problem of modeling migraine severity assessments and their dependence on weather and time characteristics. Since ordinal severity measurements arise from a single patient, dependencies among the measurements have to be accounted for. For this the autoregressive ordinal probit (AOP) model of M¨uller and Czado (2005) is utilized and fitted by a grouped move multigrid Monte Carlo (GM-MGMC) Gibbs sampler. Initially, covariates are selected using proportional odds models ignoring this dependency. Model fit and model comparison are discussed. The analysis shows that windchill and sunshine length, but not humidity and pressure differences have an effect in addition to a high dependence on previous measurements. A comparison with proportional odds specifications shows that the AOP models are preferred.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 463

Subject
Proportional odds
autoregressive component
ordinal valued time series
regression
Markov Chain Monte Carlo (MCMC)
deviance
Bayes factor

Event
Geistige Schöpfung
(who)
Czado, Claudia
Heyn, Anette
Müller, Gernot J.
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2005

DOI
doi:10.5282/ubm/epub.1832
Handle
URN
urn:nbn:de:bvb:19-epub-1832-6
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Czado, Claudia
  • Heyn, Anette
  • Müller, Gernot J.
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2005

Other Objects (12)