Artikel

What best predicts corporate bank loan defaults? An analysis of three different variable domains

This paper aims to compare the accuracy of financial ratios, tax arrears and annual report submission delays for the prediction of bank loan defaults. To achieve this, 12 variables from these three domains are used, while the study applies a longitudinal whole-population dataset from an Estonian commercial bank with 12,901 observations of defaulted and non-defaulted firms. The analysis is performed using statistical (logistic regression) and machine learning (neural networks) methods. Out of the three domains used, tax arrears show high prediction capabilities for bank loan defaults, while financial ratios and reporting delays are individually not useful for that purpose. The best default prediction accuracies were 83.5% with tax arrears only and 89.1% with all variables combined. The study contributes to the extant literature by enhancing the bank loan default prediction accuracy with the introduction of novel variables based on tax arrears, and also by indicating the pecking order of satisfying creditors' claims in the firm failure process.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 9 ; Year: 2021 ; Issue: 2 ; Pages: 1-19 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
corporate loan defaults
failure prediction
financial ratios
reporting delays
tax arrears

Ereignis
Geistige Schöpfung
(wer)
Kohv, Keijo
Lukason, Oliver
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/risks9020029
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Kohv, Keijo
  • Lukason, Oliver
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)