Artikel

Semistatic and sparse variance‐optimal hedging

We consider the problem of hedging a contingent claim with a “semistatic” strategy composed of a dynamic position in one asset and static (buy-and-hold) positions in other assets. We give general representations of the optimal strategy and the hedging error under the criterion of variance optimality and provide tractable formulas using Fourier integration in case of the Heston model. We also consider the problem of optimally selecting a sparse semistatic hedging strategy, i.e., a strategy that only uses a small subset of available hedging assets and discuss parallels to the variable-selection problem in linear regression. The methods developed are illustrated in an extended numerical example where we compute a sparse semistatic hedge for a variance swap using European options as static hedging assets.

Language
Englisch

Bibliographic citation
Journal: Mathematical Finance ; ISSN: 1467-9965 ; Volume: 30 ; Year: 2019 ; Issue: 2 ; Pages: 403-425 ; Hoboken, NJ: Wiley

Event
Geistige Schöpfung
(who)
Di Tella, Paolo
Haubold, Martin
Keller‐Ressel, Martin
Event
Veröffentlichung
(who)
Wiley
(where)
Hoboken, NJ
(when)
2019

DOI
doi:10.1111/mafi.12235
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Di Tella, Paolo
  • Haubold, Martin
  • Keller‐Ressel, Martin
  • Wiley

Time of origin

  • 2019

Other Objects (12)