Arbeitspapier

Low-rank approximations of nonseparable panel models

We provide estimation methods for panel nonseparable models based on low-rank factor structure approximations. The factor structures are estimated by matrixcompletion methods to deal with the computational challenges of principal component analysis in the presence of missing data. We show that the resulting estimators are consistent in large panels, but suffer from approximation and shrinkage biases. We correct these biases using matching and difference-in-difference approaches. Numerical examples and an empirical application to the effect of election day registration on voter turnout in the U.S. illustrate the properties and usefulness of our methods.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP52/20

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Fernández-Val, Iván
Freeman, Hugo
Weidner, Martin
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2020

DOI
doi:10.47004/wp.cem.2020.5220
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Fernández-Val, Iván
  • Freeman, Hugo
  • Weidner, Martin
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2020

Other Objects (12)