Intelligent on-demand design of phononic metamaterials

Abstract: With the growing interest in the field of artificial materials, more advanced and sophisticated functionalities are required from phononic crystals and acoustic metamaterials. This implies a high computational effort and cost, and still the efficiency of the designs may be not sufficient. With the help of third-wave artificial intelligence technologies, the design schemes of these materials are undergoing a new revolution. As an important branch of artificial intelligence, machine learning paves the way to new technological innovations by stimulating the exploration of structural design. Machine learning provides a powerful means of achieving an efficient and accurate design process by exploring nonlinear physical patterns in high-dimensional space, based on data sets of candidate structures. Many advanced machine learning algorithms, such as deep neural networks, unsupervised manifold clustering, reinforcement learning and so forth, have been widely and deeply investigated for structural design. In this review, we summarize the recent works on the combination of phononic metamaterials and machine learning. We provide an overview of machine learning on structural design. Then discuss machine learning driven on-demand design of phononic metamaterials for acoustic and elastic waves functions, topological phases and atomic-scale phonon properties. Finally, we summarize the current state of the art and provide a prospective of the future development directions.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Intelligent on-demand design of phononic metamaterials ; volume:11 ; number:3 ; year:2022 ; pages:439-460 ; extent:022
Nanophotonics ; 11, Heft 3 (2022), 439-460 (gesamt 022)

Urheber
Jin, Yabin
He, Liangshu
Wen, Zhihui
Mortazavi, Bohayra
Guo, Hongwei
Torrent, Daniel
Djafari-Rouhani, Bahram
Rabczuk, Timon
Zhuang, Xiaoying
Li, Yan

DOI
10.1515/nanoph-2021-0639
URN
urn:nbn:de:101:1-2022120813155785077855
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:30 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Jin, Yabin
  • He, Liangshu
  • Wen, Zhihui
  • Mortazavi, Bohayra
  • Guo, Hongwei
  • Torrent, Daniel
  • Djafari-Rouhani, Bahram
  • Rabczuk, Timon
  • Zhuang, Xiaoying
  • Li, Yan

Ähnliche Objekte (12)