Arbeitspapier

The slice sampler and centrally symmetric distributions

We point out that the simple slice sampler generates chains that are correlation-free when the target distribution is centrally symmetric. This property explains several results in the literature about the relative performance of the simple and product slice samplers. We exploit it to improve two algorithms often used to circumvent the slice inversion problem, namely stepping out and multivariate sampling with hyperrectangles. In the general asymmetric case, we argue that symmetrizing the target distribution before simulating greatly enhances the efficiency of the simple slice sampler. To achieve symmetry we focus on the Box-Cox transformation with parameters chosen to minimize a measure of skewness. This strategy is illustrated with several sampling problems.

ISBN
978-92-79-93405-6
Language
Englisch

Bibliographic citation
Series: JRC Working Papers in Economics and Finance ; No. 2018/11

Classification
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Subject
Box-Cox transformation
Markov Chain Monte Carlo
multivariate sampling

Event
Geistige Schöpfung
(who)
Planas, Christophe
Rossi, Alessandro
Event
Veröffentlichung
(who)
Publications Office of the European Union
(where)
Luxembourg
(when)
2018

DOI
doi:10.2760/10835
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Planas, Christophe
  • Rossi, Alessandro
  • Publications Office of the European Union

Time of origin

  • 2018

Other Objects (12)