CROCO: CROSS-MODAL CONTRASTIVE LEARNING FOR LOCALIZATION OF EARTH OBSERVATION DATA

Abstract. It is of interest to localize a ground-based LiDAR point cloud on remote sensing imagery. In this work, we tackle a subtask of this problem, i.e. to map a digital elevation model (DEM) rasterized from aerial LiDAR point cloud on the aerial imagery. We proposed a contrastive learning-based method that trains on DEM and high-resolution optical imagery and experiment the framework on different data sampling strategies and hyperparameters. In the best scenario, the Top-1 score of 0.71 and Top-5 score of 0.81 are obtained. The proposed method is promising for feature learning from RGB and DEM for localization and is potentially applicable to other data sources too. Source code is released at https://github.com/wtseng530/AVLocalization.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
CROCO: CROSS-MODAL CONTRASTIVE LEARNING FOR LOCALIZATION OF EARTH OBSERVATION DATA ; volume:V-2-2022 ; year:2022 ; pages:415-421 ; extent:7
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; V-2-2022 (2022), 415-421 (gesamt 7)

Creator
Tseng, W.-H.
Lê, H.-A.
Boulch, A.
Lefèvre, S.
Tiede, D.

DOI
10.5194/isprs-annals-V-2-2022-415-2022
URN
urn:nbn:de:101:1-2022051905172806420656
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:28 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Tseng, W.-H.
  • Lê, H.-A.
  • Boulch, A.
  • Lefèvre, S.
  • Tiede, D.

Other Objects (12)