Vanishing viscosity limit for a one-dimensional viscous conservation law in the presence of two noninteracting shocks

Abstract: In this article, we study the inviscid limit of the solution to the Cauchy problem of a one-dimensional viscous conservation law, where the second-order term is nonlinear. Under the assumption that the inviscid equation admits a piecewise smooth solution with two noninteracting entropy shocks, we prove that the solution of the viscous equation converges uniformly to the piecewise smooth inviscid solution away from the shocks, even the strength of shocks is not small.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Vanishing viscosity limit for a one-dimensional viscous conservation law in the presence of two noninteracting shocks ; volume:57 ; number:1 ; year:2024 ; extent:21
Demonstratio mathematica ; 57, Heft 1 (2024) (gesamt 21)

Creator
Feng, Li
Wang, Jing

DOI
10.1515/dema-2024-0080
URN
urn:nbn:de:101:1-2411281503237.008482896822
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:34 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Feng, Li
  • Wang, Jing

Other Objects (12)