Vanishing viscosity limit for a one-dimensional viscous conservation law in the presence of two noninteracting shocks
Abstract: In this article, we study the inviscid limit of the solution to the Cauchy problem of a one-dimensional viscous conservation law, where the second-order term is nonlinear. Under the assumption that the inviscid equation admits a piecewise smooth solution with two noninteracting entropy shocks, we prove that the solution of the viscous equation converges uniformly to the piecewise smooth inviscid solution away from the shocks, even the strength of shocks is not small.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Vanishing viscosity limit for a one-dimensional viscous conservation law in the presence of two noninteracting shocks ; volume:57 ; number:1 ; year:2024 ; extent:21
Demonstratio mathematica ; 57, Heft 1 (2024) (gesamt 21)
- Creator
-
Feng, Li
Wang, Jing
- DOI
-
10.1515/dema-2024-0080
- URN
-
urn:nbn:de:101:1-2411281503237.008482896822
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
- 15.08.2025, 7:34 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Feng, Li
- Wang, Jing