Konferenzbeitrag

Robust Inference in Time-Varying Structural VAR Models: The DC-Cholesky Multivariate Stochastic Volatility Model

This paper investigates how the ordering of variables affects properties of the time-varying covariance matrix in the Cholesky multivariate stochastic volatility model. It establishes that systematically different dynamic restrictions are imposed when the ratio of volatilities is time-varying. Simulations demonstrate that estimated covariance matrices become more divergent when volatility clusters idiosyncratically. It is illustrated that this property is important for empirical applications. Specifically, alternative estimates on the evolution of U.S. systematic monetary policy and in ation-gap persistence indicate that conclusions may critically hinge on a selected ordering of variables. The dynamic correlation Cholesky multivariate stochastic volatility model is proposed as a robust alternative.

Language
Englisch

Bibliographic citation
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2020: Gender Economics

Classification
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Business Fluctuations; Cycles
Monetary Policy
Subject
Model uncertainty
Multivariate stochastic volatility
Dynamic correlations
Monetary policy
Structural VAR

Event
Geistige Schöpfung
(who)
Hartwig, Benny
Event
Veröffentlichung
(who)
ZBW - Leibniz Information Centre for Economics
(where)
Kiel, Hamburg
(when)
2020

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzbeitrag

Associated

  • Hartwig, Benny
  • ZBW - Leibniz Information Centre for Economics

Time of origin

  • 2020

Other Objects (12)