Arbeitspapier

Automatic positive semi-definite HAC covariance matrix and GMM estimation

This paper proposes a new class of HAC covariance matrix estimators. The standard HAC estimation method re-weights estimators of the autocovariances. Here we initially smooth the data observations themselves using kernel function based weights. The resultant HAC covariance matrix estimator is the normalised outer product of the smoothed random vectors and is therefore automatically positive semi-definite. A corresponding efficient GMM criterion may also be defined as a quadratic form in the smoothed moment indicators whose normalised minimand provides a test statistic for the over-identifying moment conditions.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP17/04

Classification
Wirtschaft
Estimation: General
Multiple or Simultaneous Equation Models; Multiple Variables: General
Subject
GMM , HAC Covariance Matrix Estimation , Overidentifying Moments
Regression
Schätztheorie

Event
Geistige Schöpfung
(who)
Smith, Richard J.
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2004

DOI
doi:10.1920/wp.cem.2004.1704
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Smith, Richard J.
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2004

Other Objects (12)