Arbeitspapier

Vector autoregression models with skewness and heavy tails

With uncertain changes of the economic environment, macroeconomic downturns during recessions and crises can hardly be explained by a Gaussian structural shock. There is evidence that the distribution of macroeconomic variables is skewed and heavy tailed. In this paper, we contribute to the literature by extending a vector autore- gression (VAR) model to account for a more realistic assumption of the multivariate distribution of the macroeconomic variables. We propose a general class of generalized hyperbolic skew Student's t distribution with stochastic volatility for the error term in the VAR model that allows us to take into account skewness and heavy tails. Tools for Bayesian inference and model selection using a Gibbs sampler are provided. In an empirical study, we present evidence of skewness and heavy tails for monthly macroe- conomic variables. The analysis also gives a clear message that skewness should be taken into account for better predictions during recessions and crises.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 8/2021

Klassifikation
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Thema
Vector autoregression
Skewness and heavy tails
Generalized hyper- bolic skew Students t distribution
Stochastic volatility
Markov Chain Monte Carlo

Ereignis
Geistige Schöpfung
(wer)
Karlsson, Sune
Mazur, Stepan
Nguyen, Hoang
Ereignis
Veröffentlichung
(wer)
Örebro University School of Business
(wo)
Örebro
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Karlsson, Sune
  • Mazur, Stepan
  • Nguyen, Hoang
  • Örebro University School of Business

Entstanden

  • 2021

Ähnliche Objekte (12)