Artikel

Developing an innovative entity extraction method for unstructured data

The main goal of this study is to build high-precision extractors for entities such as Person and Organization as a good initial seed that can be used for training and learning in machine-learning systems, for the same categories, other categories, and across domains, languages, and applications. The improvement of entities extraction precision also increases the relationships extraction precision, which is particularly important in certain domains (such as intelligence systems, social networking, genetic studies, healthcare, etc.). These increases in precision improve the end users' experience quality in using the extraction system because it lowers the time that users spend for training the system and correcting outputs, focusing more on analyzing the information extracted to make better data-driven decisions.

Sprache
Englisch

Erschienen in
Journal: International Journal of Quality Innovation ; ISSN: 2363-7021 ; Volume: 3 ; Year: 2017 ; Issue: 3 ; Pages: 1-10 ; Heidelberg: Springer

Klassifikation
Management
Thema
Entity extraction
Machine learning
Precision of extraction
Text analytics
Natural language processing

Ereignis
Geistige Schöpfung
(wer)
Zaghloul, Waleed
Trimi, Silvana
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2017

DOI
doi:10.1186/s40887-017-0012-y
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Zaghloul, Waleed
  • Trimi, Silvana
  • Springer

Entstanden

  • 2017

Ähnliche Objekte (12)