Multi‐Distance Spatial‐Temporal Graph Neural Network for Anomaly Detection in Blockchain Transactions

This article presents MDST‐GNN, a multi‐distance spatial‐temporal graph neural network for blockchain anomaly detection. To address challenges in detecting fraudulent cryptocurrency transactions, MDST‐GNN integrates a multi‐distance graph convolutional architecture with adaptive temporal modeling, enabling capture of both local and global spatial dependencies while inferring patterns from anonymized temporal data. The model incorporates self‐supervised learning to enhance generalization ability. Experiments on the Elliptic dataset demonstrate MDST‐GNN's superior performance over state‐of‐the‐art methods, achieving improvements of 1.5% in AUC‐ROC and 2.9% in AUC‐PR. The model's robustness to temporal granularity and effectiveness in identifying suspicious transactions underscore its practical value for blockchain forensics.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Multi‐Distance Spatial‐Temporal Graph Neural Network for Anomaly Detection in Blockchain Transactions ; day:30 ; month:01 ; year:2025 ; extent:14
Advanced intelligent systems ; (30.01.2025) (gesamt 14)

Creator
Chen, Shiyang
Liu, Yang
Zhang, Qun
Shao, Zhouhang
Wang, Zewei

DOI
10.1002/aisy.202400898
URN
urn:nbn:de:101:1-2501311309206.945781578438
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:33 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Chen, Shiyang
  • Liu, Yang
  • Zhang, Qun
  • Shao, Zhouhang
  • Wang, Zewei

Other Objects (12)