Arbeitspapier

Clustering-based sector investing

Industry classification groups firms into finer partitions to help investments and empirical analysis. To overcome the well-documented limitations of existing industry definitions, like their stale nature and coarse categories for firms with multiple operations, we employ a clustering approach on 69 firm characteristics and allocate companies to novel economic sectors maximizing the within-group explained variation. Such sectors are dynamic yet stable, and represent a superior investment set compared to standard classification schemes for portfolio optimization and for trading strategies based on within-industry mean-reversion, which give rise to a latent risk factor significantly priced in the cross-section. We provide a new metric to quantify feature importance for clustering methods, finding that size drives differences across classical industries while book-to-market and financial liquidity variables matter for clustering-based sectors.

Sprache
Englisch

Erschienen in
Series: SAFE Working Paper ; No. 397

Klassifikation
Wirtschaft
Asset Pricing; Trading Volume; Bond Interest Rates
Large Data Sets: Modeling and Analysis
Financial Econometrics
Thema
Empirical Asset Pricing
Risk Premium
Machine Learning
Industry Classification
Clustering

Ereignis
Geistige Schöpfung
(wer)
Bagnara, Matteo
Goodarzi, Milad
Ereignis
Veröffentlichung
(wer)
Leibniz Institute for Financial Research SAFE
(wo)
Frankfurt a. M.
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bagnara, Matteo
  • Goodarzi, Milad
  • Leibniz Institute for Financial Research SAFE

Entstanden

  • 2023

Ähnliche Objekte (12)