Arbeitspapier
Clustering-based sector investing
Industry classification groups firms into finer partitions to help investments and empirical analysis. To overcome the well-documented limitations of existing industry definitions, like their stale nature and coarse categories for firms with multiple operations, we employ a clustering approach on 69 firm characteristics and allocate companies to novel economic sectors maximizing the within-group explained variation. Such sectors are dynamic yet stable, and represent a superior investment set compared to standard classification schemes for portfolio optimization and for trading strategies based on within-industry mean-reversion, which give rise to a latent risk factor significantly priced in the cross-section. We provide a new metric to quantify feature importance for clustering methods, finding that size drives differences across classical industries while book-to-market and financial liquidity variables matter for clustering-based sectors.
- Sprache
-
Englisch
- Erschienen in
-
Series: SAFE Working Paper ; No. 397
- Klassifikation
-
Wirtschaft
Asset Pricing; Trading Volume; Bond Interest Rates
Large Data Sets: Modeling and Analysis
Financial Econometrics
- Thema
-
Empirical Asset Pricing
Risk Premium
Machine Learning
Industry Classification
Clustering
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Bagnara, Matteo
Goodarzi, Milad
- Ereignis
-
Veröffentlichung
- (wer)
-
Leibniz Institute for Financial Research SAFE
- (wo)
-
Frankfurt a. M.
- (wann)
-
2023
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Bagnara, Matteo
- Goodarzi, Milad
- Leibniz Institute for Financial Research SAFE
Entstanden
- 2023