Arbeitspapier

Does peer-reviewed research help predict stock returns?

Mining 29,000 accounting ratios for t-statistics over 2.0 leads to cross-sectional predictability similar to the peer review process. For both methods, about 50% of predictability remains after the original sample periods. Data mining generates other features of peer review including the rise in returns as original sample periods end, the speed of post-sample decay, and themes like investment, issuance, and accruals. Predictors supported by peer-reviewed risk explanations underperform data mining. Similarly, the relationship between modeling rigor and post-sample returns is negative. Our results suggest peer review systematically mislabels mispricing as risk, though only 18% of predictors are attributed to risk.

Sprache
Englisch

Erschienen in
Series: CFR Working Paper ; No. 24-02

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Chen, Andrew Y.
Lopez-Lira, Alejandro
Zimmermann, Tom
Ereignis
Veröffentlichung
(wer)
University of Cologne, Centre for Financial Research (CFR)
(wo)
Cologne
(wann)
2024

Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Andrew Y.
  • Lopez-Lira, Alejandro
  • Zimmermann, Tom
  • University of Cologne, Centre for Financial Research (CFR)

Entstanden

  • 2024

Ähnliche Objekte (12)