Artikel

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step change, a linear trend and a known multiple number of changes in the Poisson rate. The Markov chain Monte Carlo is used to obtain posterior distributions of the change point parameters and corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the well-known c-, Poisson exponentially weighted moving average (EWMA) and Poisson cumulative sum (CUSUM) control charts for different change type scenarios. We also apply the Deviance Information Criterion as a model selection criterion in the Bayesian context, to find the best change point model for a given dataset where there is no prior knowledge about the change type in the process. In comparison with built-in estimators of EWMA and CUSUM charts and ML based estimators, the Bayesian estimator performs reasonably well and remains a strong alternative. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.

Sprache
Englisch

Erschienen in
Journal: Journal of Industrial Engineering International ; ISSN: 2251-712X ; Volume: 9 ; Year: 2013 ; Pages: 1-13 ; Heidelberg: Springer

Klassifikation
Management
Thema
Bayesian hierarchical model
Change point
Control charts
Markov chain Monte Carlo
Poisson process

Ereignis
Geistige Schöpfung
(wer)
Assareh, Hassan
Noorossana, Rassoul
Mengersen, Kerrie L.
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2013

DOI
doi:10.1186/2251-712X-9-32
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Assareh, Hassan
  • Noorossana, Rassoul
  • Mengersen, Kerrie L.
  • Springer

Entstanden

  • 2013

Ähnliche Objekte (12)