Arbeitspapier

Learning cost sensitive binary classification rules accounting for uncertain and unequal misclassification costs

This paper proposes cost sensitive criteria for constructing classification rules by supervised learning methods. Reinterpreting established loss functions and considering those introduced by Buja, Stuetzle, et al. (2005) and Hand (2009), we identify criteria reflecting different degrees of information about misclassification costs. To adapt classification methodology to practical cost considerations, we suggest the use of these criteria for different model selection approaches in supervised learning. In addition, we investigate the effects of cost sensitive adaptations in CART and boosting and conclude that adaptations are more promising in the selection rather than in the estimation step.

Language
Englisch

Bibliographic citation
Series: IWQW Discussion Papers ; No. 01/2014

Classification
Wirtschaft
Subject
unequal misclassification costs
proper scoring rules
AUC
boosting
CART
model selection
pruning
early stopping

Event
Geistige Schöpfung
(who)
Rybizki, Lydia
Event
Veröffentlichung
(who)
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
(where)
Nürnberg
(when)
2014

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Rybizki, Lydia
  • Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)

Time of origin

  • 2014

Other Objects (12)