Arbeitspapier

Optimal monetary policy using reinforcement learning

This paper introduces a reinforcement learning based approach to compute optimal interest rate reaction functions in terms of fulfilling inflation and output gap targets. The method is generally flexible enough to incorporate restrictions like the zero lower bound, nonlinear economy structures or asymmetric preferences. We use quarterly U.S. data from1987:Q3-2007:Q2 to estimate (nonlinear) model transition equations, train optimal policies and perform counterfactual analyses to evaluate them, assuming that the transition equations remain unchanged. All of our resulting policy rules outperform other common rules as well as the actual federal funds rate. Given a neural network representation of the economy, our optimized nonlinear policy rules reduce the central bank's loss by over43 %. A DSGE model comparison exercise further indicates robustness of the optimized rules.

ISBN
978-3-95729-861-4
Language
Englisch

Bibliographic citation
Series: Deutsche Bundesbank Discussion Paper ; No. 51/2021

Classification
Wirtschaft
Neural Networks and Related Topics
Optimization Techniques; Programming Models; Dynamic Analysis
Monetary Policy
Central Banks and Their Policies
Subject
Optimal Monetary Policy
Reinforcement Learning
Artificial Neural Network
Machine Learning
Reaction Function

Event
Geistige Schöpfung
(who)
Hinterlang, Natascha
Tänzer, Alina
Event
Veröffentlichung
(who)
Deutsche Bundesbank
(where)
Frankfurt a. M.
(when)
2021

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Hinterlang, Natascha
  • Tänzer, Alina
  • Deutsche Bundesbank

Time of origin

  • 2021

Other Objects (12)