Arbeitspapier

Optimal monetary policy using reinforcement learning

This paper introduces a reinforcement learning based approach to compute optimal interest rate reaction functions in terms of fulfilling inflation and output gap targets. The method is generally flexible enough to incorporate restrictions like the zero lower bound, nonlinear economy structures or asymmetric preferences. We use quarterly U.S. data from1987:Q3-2007:Q2 to estimate (nonlinear) model transition equations, train optimal policies and perform counterfactual analyses to evaluate them, assuming that the transition equations remain unchanged. All of our resulting policy rules outperform other common rules as well as the actual federal funds rate. Given a neural network representation of the economy, our optimized nonlinear policy rules reduce the central bank's loss by over43 %. A DSGE model comparison exercise further indicates robustness of the optimized rules.

ISBN
978-3-95729-861-4
Sprache
Englisch

Erschienen in
Series: Deutsche Bundesbank Discussion Paper ; No. 51/2021

Klassifikation
Wirtschaft
Neural Networks and Related Topics
Optimization Techniques; Programming Models; Dynamic Analysis
Monetary Policy
Central Banks and Their Policies
Thema
Optimal Monetary Policy
Reinforcement Learning
Artificial Neural Network
Machine Learning
Reaction Function

Ereignis
Geistige Schöpfung
(wer)
Hinterlang, Natascha
Tänzer, Alina
Ereignis
Veröffentlichung
(wer)
Deutsche Bundesbank
(wo)
Frankfurt a. M.
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hinterlang, Natascha
  • Tänzer, Alina
  • Deutsche Bundesbank

Entstanden

  • 2021

Ähnliche Objekte (12)