Artikel

Triple the gamma: A unifying shrinkage prior for variance and variable selection in sparse state space and TVP models

Time-varying parameter (TVP) models are very flexible in capturing gradual changes in the effect of explanatory variables on the outcome variable. However, in particular when the number of explanatory variables is large, there is a known risk of overfitting and poor predictive performance, since the effect of some explanatory variables is constant over time. We propose a new prior for variance shrinkage in TVP models, called triple gamma. The triple gamma prior encompasses a number of priors that have been suggested previously, such as the Bayesian Lasso, the double gamma prior and the Horseshoe prior. We present the desirable properties of such a prior and its relationship to Bayesian Model Averaging for variance selection. The features of the triple gamma prior are then illustrated in the context of time varying parameter vector autoregressive models, both for simulated dataset and for a series of macroeconomics variables in the Euro Area.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 8 ; Year: 2020 ; Issue: 2 ; Pages: 1-36 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
Bayesian model averaging
horseshoe prior
lasso prior
sparsity
stochastic volatility
triple gamma prior
VAR models

Ereignis
Geistige Schöpfung
(wer)
Cadonna, Annalisa
Frühwirth-Schnatter, Sylvia
Knaus, Peter
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/econometrics8020020
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Cadonna, Annalisa
  • Frühwirth-Schnatter, Sylvia
  • Knaus, Peter
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)