Arbeitspapier
Whatever it takes to understand a central banker: Embedding their words using neural networks
Dictionary approaches are at the forefront of current techniques for quantifying central bank communication. This paper proposes embeddings - a language model trained using machine learning techniques - to locate words and documents in a multidimensional vector space. To accomplish this, we utilize a text corpus that is unparalleled in size and diversity in the central bank communication literature, as well as introduce a novel approach to text quantification from computational linguistics. This allows us to provide high-quality central bank-specific textual representations and demonstrate their applicability by developing an index that tracks deviations in the Fed's communication towards inflation targeting. Our findings indicate that these deviations in communication significantly impact monetary policy actions, substantially reducing the reaction towards inflation deviation in the US.
- Sprache
-
Englisch
- Erschienen in
-
Series: IMFS Working Paper Series ; No. 194
- Klassifikation
-
Wirtschaft
Neural Networks and Related Topics
Forecasting Models; Simulation Methods
Monetary Policy
Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification
- Thema
-
Word Embedding
Neural Network
Central Bank Communication
Natural Language Processing
Transfer Learning
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Baumgärtner, Martin
Zahner, Johannes
- Ereignis
-
Veröffentlichung
- (wer)
-
Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS)
- (wo)
-
Frankfurt a. M.
- (wann)
-
2023
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Baumgärtner, Martin
- Zahner, Johannes
- Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS)
Entstanden
- 2023