Arbeitspapier

Posterior consistency in conditional density estimation by covariate dependent mixtures

This paper considers Bayesian nonparametric estimation of conditional densities by countable mixtures of location-scale densities with covariate dependent mixing probabilities. The mixing probabilities are modeled in two ways. First, we consider finite covariate dependent mixture models, in which the mixing probabilities are proportional to a product of a constant and a kernel and a prior on the number of mixture components is specified. Second, we consider kernel stick-breaking processes for modeling the mixing probabilities. We show that the posterior in these two models is weakly and strongly consistent for a large class of data generating processes.

Sprache
Englisch

Erschienen in
Series: Reihe Ökonomie / Economics Series ; No. 282

Klassifikation
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Thema
Bayesian nonparametrics
posterior consistency
conditional density estimation
mixtures of normal distributions
location-scale mixtures
smoothly mixing regressions
mixtures of experts
dependent Dirichlet process
kernel stick-breaking process

Ereignis
Geistige Schöpfung
(wer)
Norets, Andriy
Pelenis, Justinas
Ereignis
Veröffentlichung
(wer)
Institute for Advanced Studies (IHS)
(wo)
Vienna
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Norets, Andriy
  • Pelenis, Justinas
  • Institute for Advanced Studies (IHS)

Entstanden

  • 2011

Ähnliche Objekte (12)