Arbeitspapier

Edgeworth Expansions for Multivariate Random Sums

The sum of a random number of independent and identically distributed random vectors has a distribution which is not analytically tractable, in the general case. The problem has been addressed by means of asymptotic approximations embedding the number of summands in a stochastically increasing sequence. Another approach relies on tting exible and tractable parametric, multivariate distributions, as for example nite mixtures. In this paper we investigate both approaches within the framework of Edgeworth expansions. We derive a general formula for the fourth-order cumulants of the random sum of independent and identically distributed random vectors and show that the above mentioned asymptotic approach does not necessarily lead to valid asymptotic normal approximations. We address the problem by means of Edgeworth expansions. Both theoretical and empirical results suggest that mixtures of two multivariate normal distributions with proportional covariance matrices satisfactorily t data generated from random sums where the counting random variable and the random summands are Poisson and multivariate skew-normal, respectively.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 9/2020

Klassifikation
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Thema
Edgeworth expansion
Fourth cumulant
Random sum
Skew-normal

Ereignis
Geistige Schöpfung
(wer)
Javed, Farrukh
Loperfido, Nicola
Mazur, Stepan
Ereignis
Veröffentlichung
(wer)
Örebro University School of Business
(wo)
Örebro
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Javed, Farrukh
  • Loperfido, Nicola
  • Mazur, Stepan
  • Örebro University School of Business

Entstanden

  • 2020

Ähnliche Objekte (12)