URBAN CLASSIFICATION BASED ON TOP-VIEW POINT CLOUD AND SAR IMAGE FUSION WITH SWIN TRANSFORMER
Abstract. Urban areas are complex scenarios consisting of objects with various materials. This variety poses a challenge to single-data classification schemes. In this paper, we propose a feature fusion and classification network on RGB top-view point cloud and SAR images with swin-Transformer. In this network, the heterogeneous features are learned separately by an asymmetric encoder, and then they are concatenated along the channel dimension and fed into a fusing encoder. Finally, the fused features are decoded by an UperNet for generating the semantic labels. As data we use high-resolution 3D point cloud provided by Hessigheim benchmark which are complemented by TerraSAR-X images. The overall precision and the mean intersection over union (mIoU) achieves 87.25% and 73.56%, respectively, which outperforms the single-data swin-Transformer by 4.08% and 1.91%, respectively.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
URBAN CLASSIFICATION BASED ON TOP-VIEW POINT CLOUD AND SAR IMAGE FUSION WITH SWIN TRANSFORMER ; volume:XLIII-B3-2022 ; year:2022 ; pages:559-564 ; extent:6
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLIII-B3-2022 (2022), 559-564 (gesamt 6)
- Urheber
-
Xue, R.
Zhang, X.
Soergel, U.
- DOI
-
10.5194/isprs-archives-XLIII-B3-2022-559-2022
- URN
-
urn:nbn:de:101:1-2022060205480520356781
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
- 15.08.2025, 07:27 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Xue, R.
- Zhang, X.
- Soergel, U.