Arbeitspapier

Estimating systematic risk under extremely adverse market conditions

This paper considers the problem of estimating a linear model between two heavy-tailed variables if the explanatory variable has an extremely low (or high) value. We propose an estimator for the model coefficient by exploiting the tail dependence between the two variables and prove its asymptotic properties. Simulations show that our estimation method yields a lower mean squared error than regressions conditional on tail observations. In an empirical application we illustrate the better performance of our approach relative to the conditional regression approach in projecting the losses of industry-specific stock portfolios in the event of a market crash.

Language
Englisch

Bibliographic citation
Series: Bank of Canada Staff Working Paper ; No. 2016-22

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Financial Crises
Subject
Econometric and statistical methods
Financial markets

Event
Geistige Schöpfung
(who)
van Oordt, Maarten R. C.
Chen Zhou
Event
Veröffentlichung
(who)
Bank of Canada
(where)
Ottawa
(when)
2016

DOI
doi:10.34989/swp-2016-22
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • van Oordt, Maarten R. C.
  • Chen Zhou
  • Bank of Canada

Time of origin

  • 2016

Other Objects (12)