Arbeitspapier

An adaptive test of stochastic monotonicity

We propose a new nonparametric test of stochastic monotonicity which adapts to the unknown smoothness of the conditional distribution of interest, possesses desirable asymptotic properties, is conceptually easy to implement, and computationally attractive. In particular, we show that the test asymptotically controls size at a polynomial rate, is non-conservative, and detects local alternatives that converge to the null with the fastest possible rate. Our test is based on a data-driven bandwidth value and the critical value for the test takes this randomness into account. Monte Carlo simulations indicate that the test performs well in finite samples. In particular, the simulations show that the test controls size and may be significantly more powerful than existing alternative procedures.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP24/18

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Chetverikov, Denis
Wilhelm, Daniel
Kim, Dongwoo
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2018

DOI
doi:10.1920/wp.cem.2018.2418
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Chetverikov, Denis
  • Wilhelm, Daniel
  • Kim, Dongwoo
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2018

Other Objects (12)