Journal article | Zeitschriftenartikel

Econometric estimation in long–range dependent volatility models: theory and practice

It is commonly accepted that some financial data may exhibit long-range dependence, while other financial data exhibit intermediate-range dependence or short-range dependence. These behaviours may be fitted to a continuous-time fractional stochastic model. The estimation procedure proposed in this paper is based on a continuous-time version of the Gauss–Whittle objective function to find the parameter estimates that minimize the discrepancy between the spectral density and the data periodogram. As a special case, the proposed estimation procedure is applied to a class of fractional stochastic volatility models to estimate the drift, standard deviation and memory parameters of the volatility process under consideration. As an application, the volatility of the Dow Jones, S&P 500, CAC 40, DAX 30, FTSE 100 and NIKKEI 225 is estimated.

Econometric estimation in long–range dependent volatility models: theory and practice

Urheber*in: Casas, Isabel; Gao, Jiti

Free access - no reuse

0
/
0

Extent
Seite(n): 72-83
Language
Englisch
Notes
Status: Postprint; begutachtet (peer reviewed)

Bibliographic citation
Journal of Econometrics, 147(1)

Subject
Wirtschaft
Wirtschaftswissenschaften

Event
Geistige Schöpfung
(who)
Casas, Isabel
Gao, Jiti
Event
Veröffentlichung
(where)
Niederlande
(when)
2008

DOI
URN
urn:nbn:de:0168-ssoar-201031
Rights
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Last update
21.06.2024, 4:27 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Zeitschriftenartikel

Associated

  • Casas, Isabel
  • Gao, Jiti

Time of origin

  • 2008

Other Objects (12)