Journal article | Zeitschriftenartikel
Econometric estimation in long–range dependent volatility models: theory and practice
It is commonly accepted that some financial data may exhibit long-range dependence, while other financial data exhibit intermediate-range dependence or short-range dependence. These behaviours may be fitted to a continuous-time fractional stochastic model. The estimation procedure proposed in this paper is based on a continuous-time version of the Gauss–Whittle objective function to find the parameter estimates that minimize the discrepancy between the spectral density and the data periodogram. As a special case, the proposed estimation procedure is applied to a class of fractional stochastic volatility models to estimate the drift, standard deviation and memory parameters of the volatility process under consideration. As an application, the volatility of the Dow Jones, S&P 500, CAC 40, DAX 30, FTSE 100 and NIKKEI 225 is estimated.
- Extent
-
Seite(n): 72-83
- Language
-
Englisch
- Notes
-
Status: Postprint; begutachtet (peer reviewed)
- Bibliographic citation
-
Journal of Econometrics, 147(1)
- Subject
-
Wirtschaft
Wirtschaftswissenschaften
- Event
-
Geistige Schöpfung
- (who)
-
Casas, Isabel
Gao, Jiti
- Event
-
Veröffentlichung
- (where)
-
Niederlande
- (when)
-
2008
- DOI
- URN
-
urn:nbn:de:0168-ssoar-201031
- Rights
-
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
- Last update
-
21.06.2024, 4:27 PM CEST
Data provider
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.
Object type
- Zeitschriftenartikel
Associated
- Casas, Isabel
- Gao, Jiti
Time of origin
- 2008