Arbeitspapier

Forecasting daily electricity prices with monthly macroeconomic variables

We analyse the importance of macroeconomic information, such as industrial production index and oil price, for forecasting daily electricity prices in two of the main European markets, Germany and Italy. We do that by means of mixed-frequency models, introducing a Bayesian approach to reverse unrestricted MIDAS models (RU-MIDAS). We study the forecasting accuracy for different horizons (from 1 day ahead to 28 days ahead) and by considering different specifications of the models. We find gains around 20% at short horizons and around 10% at long horizons. Therefore, it turns out that the macroeconomic low frequency variables are more important for short horizons than for longer horizons. The benchmark is almost never included in the model confidence set.

ISBN
978-92-899-3512-8
Sprache
Englisch

Erschienen in
Series: ECB Working Paper ; No. 2250

Klassifikation
Wirtschaft
Bayesian Analysis: General
Forecasting Models; Simulation Methods
Energy and the Macroeconomy
Energy Forecasting
Thema
Density Forecasting
Electricity Prices
Forecasting
Mixed-Frequency VAR models
MIDAS models

Ereignis
Geistige Schöpfung
(wer)
Foroni, Claudia
Ravazzolo, Francesco
Rossini, Luca
Ereignis
Veröffentlichung
(wer)
European Central Bank (ECB)
(wo)
Frankfurt a. M.
(wann)
2019

DOI
doi:10.2866/341253
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Foroni, Claudia
  • Ravazzolo, Francesco
  • Rossini, Luca
  • European Central Bank (ECB)

Entstanden

  • 2019

Ähnliche Objekte (12)