Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers

Abstract Ice cliffs are melt hot spots that contribute disproportionately to melt on debris-covered glaciers. In this study, we investigate the impact of supraglacial stream hydrology on ice cliffs using in situ and remote sensing observations, streamflow measurements, and a conceptual geomorphic model of ice cliff backwasting applied to ice cliffs on Kennicott Glacier, Alaska. We found that 33 % of ice cliffs (accounting for 69 % of the ice cliff area) are actively influenced by streams, while half are nearer than 10 m from the nearest stream. Supraglacial streams contribute to ice cliff formation and maintenance by horizontal meandering, vertical incision, and debris transport. These processes produce an undercut lip at the ice cliff base and transport clasts up to tens of centimeters in diameter, preventing reburial of ice cliffs by debris. Stream meander morphology reminiscent of sedimentary river channel meanders and oxbow lakes produces sinuous and crescent ice cliff shapes. Stream avulsions result in rapid ice cliff collapse and local channel abandonment. Ice cliffs abandoned by streams are observed to be reburied by supraglacial debris, indicating a strong role played by streams in ice cliff persistence. We also report on a localized surge-like event at the glacier's western margin which drove the formation of ice cliffs from crevassing; these cliffs occur in sets with parallel linear morphologies contrasting with the crescent planform shape of stream-driven cliffs. The development of landscape evolution models may assist in quantifying the total net effect of these processes on steady-state ice cliff coverage and mass balance, contextualizing them with other drivers including supraglacial ponds, differential melt, ice dynamics, and collapse of englacial voids.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Stream hydrology controls on ice cliff evolution and survival on debris-covered glaciers ; volume:12 ; number:3 ; year:2024 ; pages:727-745 ; extent:19
Earth surface dynamics ; 12, Heft 3 (2024), 727-745 (gesamt 19)

Creator
Petersen, Eric
Hock, Regine
Loso, Michael G.

DOI
10.5194/esurf-12-727-2024
URN
urn:nbn:de:101:1-2405160427081.581086553261
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:53 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)