Artikel
Predicting corporate failure: The GRASP-LOGIT model
Predicting corporate failure is an important problem in management science. This study tests a new method for predicting corporate failure on a sample of Spanish firms. A GRASP (Greedy Randomized Adaptive Search Procedure) strategy is proposed to use a feature selection algorithm to select a subset of available financial ratios, as a preliminary step in estimating a model of logistic regression for predicting corporate failure. Selecting only a subset of variables (financial ratios) reduces the costs of data acquisition, increases prediction accuracy by excluding irrelevant variables, and provides insight into the nature of the prediction problem allowing a better understanding of the final classification model. The proposed algorithm, that it is named GRASP-LOGIT algorithm, performs better than a simple logistic regression in that it reaches the same level of forecasting ability with fewer accounting ratios, leading to a better interpretation of the model and therefore to a better understanding of the failure process.
- Weitere Titel
 - 
                Predicción de la quiebra empresarial: El modelo GRASP-LOGIT
 
- Sprache
 - 
                Englisch
 
- Erschienen in
 - 
                Journal: Revista de Métodos Cuantitativos para la Economía y la Empresa ; ISSN: 1886-516X ; Volume: 26 ; Year: 2018 ; Pages: 294-314
 
- Klassifikation
 - 
                Wirtschaft
Multiple or Simultaneous Equation Models; Multiple Variables: Other
Operations Research; Statistical Decision Theory
Bankruptcy; Liquidation
 
- Thema
 - 
                Financial distress
accounting ratios
feature selection
GRASP metaheuristic
logistic regression
 
- Ereignis
 - 
                Geistige Schöpfung
 
- (wer)
 - 
                Yusta, Silvia Casado
Letamendía, Laura Nuñez
Pacheco Bonrostro, Joaquín Antonio
 
- Ereignis
 - 
                Veröffentlichung
 
- (wer)
 - 
                Universidad Pablo de Olavide
 
- (wo)
 - 
                Sevilla
 
- (wann)
 - 
                2018
 
- DOI
 - 
                
                    
                        doi:10.46661/revmetodoscuanteconempresa.2810
 
- Handle
 
- Letzte Aktualisierung
 - 
                
                    
                        10.03.2025, 11:42 MEZ
 
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
 
Beteiligte
- Yusta, Silvia Casado
 - Letamendía, Laura Nuñez
 - Pacheco Bonrostro, Joaquín Antonio
 - Universidad Pablo de Olavide
 
Entstanden
- 2018