Artikel

Predicting corporate failure: The GRASP-LOGIT model

Predicting corporate failure is an important problem in management science. This study tests a new method for predicting corporate failure on a sample of Spanish firms. A GRASP (Greedy Randomized Adaptive Search Procedure) strategy is proposed to use a feature selection algorithm to select a subset of available financial ratios, as a preliminary step in estimating a model of logistic regression for predicting corporate failure. Selecting only a subset of variables (financial ratios) reduces the costs of data acquisition, increases prediction accuracy by excluding irrelevant variables, and provides insight into the nature of the prediction problem allowing a better understanding of the final classification model. The proposed algorithm, that it is named GRASP-LOGIT algorithm, performs better than a simple logistic regression in that it reaches the same level of forecasting ability with fewer accounting ratios, leading to a better interpretation of the model and therefore to a better understanding of the failure process.

Weitere Titel
Predicción de la quiebra empresarial: El modelo GRASP-LOGIT
Sprache
Englisch

Erschienen in
Journal: Revista de Métodos Cuantitativos para la Economía y la Empresa ; ISSN: 1886-516X ; Volume: 26 ; Year: 2018 ; Pages: 294-314

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models; Multiple Variables: Other
Operations Research; Statistical Decision Theory
Bankruptcy; Liquidation
Thema
Financial distress
accounting ratios
feature selection
GRASP metaheuristic
logistic regression

Ereignis
Geistige Schöpfung
(wer)
Yusta, Silvia Casado
Letamendía, Laura Nuñez
Pacheco Bonrostro, Joaquín Antonio
Ereignis
Veröffentlichung
(wer)
Universidad Pablo de Olavide
(wo)
Sevilla
(wann)
2018

DOI
doi:10.46661/revmetodoscuanteconempresa.2810
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Yusta, Silvia Casado
  • Letamendía, Laura Nuñez
  • Pacheco Bonrostro, Joaquín Antonio
  • Universidad Pablo de Olavide

Entstanden

  • 2018

Ähnliche Objekte (12)