Arbeitspapier

Two-Stage Least Squares Random Forests with an Application to Angrist and Evans (1998)

We develop the case of two-stage least squares estimation (2SLS) in the general framework of Athey et al. (Generalized Random Forests, Annals of Statistics, Vol. 47, 2019) and provide a software implementation for R and C++. We use the method to revisit the classic application of instrumental variables in Angrist and Evans (Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size, American Economic Review, Vol. 88, 1998). The two-stage least squares random forest allows one to investigate local heterogenous effects that cannot be investigated using ordinary 2SLS.

Language
Englisch

Bibliographic citation
Series: IZA Discussion Papers ; No. 13613

Classification
Wirtschaft
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Large Data Sets: Modeling and Analysis
Time Allocation and Labor Supply
Fertility; Family Planning; Child Care; Children; Youth
Semiparametric and Nonparametric Methods: General
Subject
machine learning
generalized random forests
fertility
instrumental variable estimation

Event
Geistige Schöpfung
(who)
Biewen, Martin
Kugler, Philipp
Event
Veröffentlichung
(who)
Institute of Labor Economics (IZA)
(where)
Bonn
(when)
2020

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Biewen, Martin
  • Kugler, Philipp
  • Institute of Labor Economics (IZA)

Time of origin

  • 2020

Other Objects (12)