Nonlinear elliptic–parabolic problem involving p-Dirichlet-to-Neumann operator with critical exponent

Abstract: We consider the nonlinear elliptic–parabolic boundary value problem involving the Dirichlet-to-Neumann operator of p-Laplace type at the critical Sobolev exponent. We first obtain the existence and asymptotic estimates of the global solution, and the sufficient conditions of finite time blowup of the solution by using the energy method. Second, we improve the regularity of solution by Moser-type iteration. Finally, we analyze the long-time asymptotic behavior of the global solution. Moreover, with the help of the concentration compactness principle, we present a precise description of the concentration phenomenon of the solution in the forward time infinity.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Nonlinear elliptic–parabolic problem involving p-Dirichlet-to-Neumann operator with critical exponent ; volume:12 ; number:1 ; year:2023 ; extent:23
Advances in nonlinear analysis ; 12, Heft 1 (2023) (gesamt 23)

Urheber
Deng, Yanhua
Tan, Zhong
Xie, Minghong

DOI
10.1515/anona-2022-0306
URN
urn:nbn:de:101:1-2023032814192706024468
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:54 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Deng, Yanhua
  • Tan, Zhong
  • Xie, Minghong

Ähnliche Objekte (12)