Arbeitspapier
Assessing macro-fiscal risk for Latin American and Caribbean countries
This paper provides a comprehensive early warning system (EWS) that balances the classical signaling approach with the best-realized machine learning (ML) model for predicting fiscal stress episodes. Using accumulated local effects (ALE), we compute a set of thresholds for the most informative variables that drive the correlation between predictors. In addition, to evaluate the main country risks, we propose a leading fiscal risk indicator, highlighting macro, fiscal and institutional attributes. Estimates from different models suggest significant heterogeneity among the most critical variables in determining fiscal risk across countries. While macro variables have higher relevance for advanced countries, fiscal variables were more significant for Latin American and Caribbean (LAC) and emerging economies. These results are consistent under different liquidity-solvency metrics and have deepened since the global financial crisis.
- Sprache
-
Englisch
- Erschienen in
-
Series: IDB Working Paper Series ; No. IDB-WP-1346
- Klassifikation
-
Wirtschaft
Forecasting Models; Simulation Methods
National Debt; Debt Management; Sovereign Debt
Fiscal Policy
- Thema
-
forecasting
early warning system
fiscal policy
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Valencia, Oscar M.
Díaz, Juan Camilo
Parra, Diego A.
- Ereignis
-
Veröffentlichung
- (wer)
-
Inter-American Development Bank (IDB)
- (wo)
-
Washington, DC
- (wann)
-
2022
- DOI
-
doi:10.18235/0004530
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Valencia, Oscar M.
- Díaz, Juan Camilo
- Parra, Diego A.
- Inter-American Development Bank (IDB)
Entstanden
- 2022