Machine Learning‐Informed Predictive Design and Analysis of Electrohydrodynamic Printing Systems
Electrohydrodynamic (EHD) processes are promising techniques for manufacturing nanoscopic products with different shapes (such as thin films, nanofibers, 2D/3D nanostructures, and nanoparticles) and materials at a low cost using simple equipment. A key challenge in their adoption by nonexperts is the requirement of enormous time and resources in identifying the optimum design/process parameters for the underlying material and EHD system. Machine learning (ML) has made exciting advancements in predictive modeling of different processes, provided it is trained on high‐quality datasets at appropriate volumes. This article extends the suitability of such ML‐enabled approaches to a new technological domain of EHD spraying and drop‐on‐demand printing. Different ML models like ridge regression, random forest regression, support vector regression, gradient boosting regression, and multilayer perceptron are trained and their performance using evaluation metrics like RMSE and R2_score is examined. Tree‐based algorithms like gradient boosting regression are found to be the most suitable technique for modeling EHD processes. The trained ML models show substantially higher accuracy (average error < 5%) in replicating these nonlinear processes as compared to previously reported scaling laws (average error ≈ 42%) and are well suited for predictive modeling/analysis of the underlying EHD system and process.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Machine Learning‐Informed Predictive Design and Analysis of Electrohydrodynamic Printing Systems ; day:09 ; month:08 ; year:2023 ; extent:12
Advanced engineering materials ; (09.08.2023) (gesamt 12)
- Urheber
-
Singh, Sachin Kumar
Rai, Nikhil
Subramanian, Arunkumar
- DOI
-
10.1002/adem.202300740
- URN
-
urn:nbn:de:101:1-2023081015221149309625
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
- 14.08.2025, 10:47 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Singh, Sachin Kumar
- Rai, Nikhil
- Subramanian, Arunkumar