Arbeitspapier

A uniform central limit theorem and efficiency for deconvolution estimators

We estimate linear functionals in the classical deconvolution problem by kernel estimators. We obtain a uniform central limit theorem with square root n rate on the assumption that the smoothness of the functionals is larger than the ill-posedness of the problem, which is given by the polynomial decay rate of the characteristic function of the error. The limit distribution is a generalized Brownian bridge with a covariance structure that depends on the characteristic function of the error and on the functionals. The proposed estimators are optimal in the sense of semiparametric efficiency. The class of linear functionals is wide enough to incorporate the estimation of distribution functions. The proofs are based on smoothed empirical processes and mapping properties of the deconvolution operator.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2012-046

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Thema
Deconvolution
Donsker theorem
Efficiency
Distribution function
Smoothed empirical processes
Fourier multiplier
Schätztheorie
Theorie

Ereignis
Geistige Schöpfung
(wer)
Söhl, Jakob
Trabs, Mathias
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Söhl, Jakob
  • Trabs, Mathias
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2012

Ähnliche Objekte (12)