Arbeitspapier

Optimal vaccination in a SIRS epedemic model

We propose and solve an optimal vaccination problem within a deterministic compartmental model of SIRS type: the immunized population can become susceptible again, e.g. because of a not complete immunization power of the vaccine. A social planner thus aims at reducing the number of susceptible individuals via a vaccination campaign, while minimizing the social and economic costs related to the infectious disease. As a theoretical contribution, we provide a technical non-smooth veri fication theorem, guaranteeing that a semiconcave viscosity solution to the Hamilton-Jacobi-Bellman equation identifies with the minimal cost function, provided that the closed-loop equation admits a solution. Conditions under which the closed-loop equation is well-posed are then derived by borrowing results from the theory of Regular Lagrangian Flows. From the applied point of view, we provide a numerical implementation of the model in a case study with quadratic instantaneous costs. Amongst other conclusions, we observe that in the long-run the optimal vaccination policy is able to keep the percentage of infected to zero, at least when the natural reproduction number and the reinfection rate are small.

Sprache
Englisch

Erschienen in
Series: Center for Mathematical Economics Working Papers ; No. 667

Thema
SIRS model
optimal control
viscosity solution
non-smooth verification theorem
epidemic
optimal vaccination

Ereignis
Geistige Schöpfung
(wer)
Federico, Salvatore
Ferrari, Giorgio
Torrente, Maria-Laura
Ereignis
Veröffentlichung
(wer)
Bielefeld University, Center for Mathematical Economics (IMW)
(wo)
Bielefeld
(wann)
2022

Handle
URN
urn:nbn:de:0070-pub-29637146
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Federico, Salvatore
  • Ferrari, Giorgio
  • Torrente, Maria-Laura
  • Bielefeld University, Center for Mathematical Economics (IMW)

Entstanden

  • 2022

Ähnliche Objekte (12)