Arbeitspapier
Data Gaps, Data Incomparability, and Data Imputation: A Review of Poverty Measurement Methods for Data-Scarce Environments
We offer a review of methods that have been employed to provide poverty estimates of poverty in contexts where household consumption data are unavailable or missing. These contexts range from completely missing and partially missing consumption data in cross sectional household surveys, to missing panel household data. We focus on methods that aim to compare trends and dynamic patterns of poverty outcomes over time. We present the various existing methods under a common framework, with pedagogical discussion on the intuition. Empirical illustrations are provided using several rounds of household survey data from Vietnam. Furthermore, we also offer a practical guide with detailed instructions on computer programs that can be used to implement the reviewed techniques.
- Sprache
-
Englisch
- Erschienen in
-
Series: GLO Discussion Paper ; No. 179
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Measurement and Analysis of Poverty
Economic Development: Human Resources; Human Development; Income Distribution; Migration
- Thema
-
poverty
mobility
imputation
consumption
wealth index
synthetic panels
household survey
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dang, Hai-Anh
Jolliffe, Dean
Carletto, Calogero
- Ereignis
-
Veröffentlichung
- (wer)
-
Global Labor Organization (GLO)
- (wo)
-
Maastricht
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Dang, Hai-Anh
- Jolliffe, Dean
- Carletto, Calogero
- Global Labor Organization (GLO)
Entstanden
- 2018