Arbeitspapier

SVARs in the frequency domain using a continuum of restrictions

This paper proposes a joint methodology for the identification and inference of structural vector autoregressive models in the frequency domain. We show that identifying restrictions can be written naturally as an asymptotic least squares problem (Gourieroux, Monfort and Trognon, 1985) in which there is a continuum of nonlinear estimating equations. Following Carrasco and Florens (2000), we then develop a continuum asymptotic least squares estimator (C-ALS) that exploits efficiently the continuum of estimating equations thereby allowing to obtain optimal consistent estimates of impulse responses and reliable confidence intervals. Moreover the identifying restrictions can be formally tested using an appropriate J-stat and the frequency band can be selected with a data-driven procedure. Finally, we provide some new results using Monte Carlo simulations and applications regarding the hours-productivity debate and the impact of news shocks.

Language
Englisch

Bibliographic citation
Series: Document de travail ; No. 2021-06

Classification
Wirtschaft
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Subject
SVARs
Frequency domain
Asymptotic least squares
Continuum of identifying restrictions

Event
Geistige Schöpfung
(who)
Guay, Alain
Pelgrin, Florian
Event
Veröffentlichung
(who)
Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques
(where)
Montréal
(when)
2021

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Guay, Alain
  • Pelgrin, Florian
  • Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques

Time of origin

  • 2021

Other Objects (12)