Arbeitspapier
SVARs in the frequency domain using a continuum of restrictions
This paper proposes a joint methodology for the identification and inference of structural vector autoregressive models in the frequency domain. We show that identifying restrictions can be written naturally as an asymptotic least squares problem (Gourieroux, Monfort and Trognon, 1985) in which there is a continuum of nonlinear estimating equations. Following Carrasco and Florens (2000), we then develop a continuum asymptotic least squares estimator (C-ALS) that exploits efficiently the continuum of estimating equations thereby allowing to obtain optimal consistent estimates of impulse responses and reliable confidence intervals. Moreover the identifying restrictions can be formally tested using an appropriate J-stat and the frequency band can be selected with a data-driven procedure. Finally, we provide some new results using Monte Carlo simulations and applications regarding the hours-productivity debate and the impact of news shocks.
- Language
-
Englisch
- Bibliographic citation
-
Series: Document de travail ; No. 2021-06
- Classification
-
Wirtschaft
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
- Subject
-
SVARs
Frequency domain
Asymptotic least squares
Continuum of identifying restrictions
- Event
-
Geistige Schöpfung
- (who)
-
Guay, Alain
Pelgrin, Florian
- Event
-
Veröffentlichung
- (who)
-
Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques
- (where)
-
Montréal
- (when)
-
2021
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Guay, Alain
- Pelgrin, Florian
- Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques
Time of origin
- 2021